
Transparent Keyservers:
Trust at Scale
Gary Belvin
@gdbelvin

Preliminary work based on CONIKS and Certificate Transparency

Problem
Websites have secure identities Users don’t

www

HTTPS

CA
www

“Trusted” Third Party

?

HTTPS HTTPS

CT

Spectrum of Identity Management

Security Scale

In-Person
● Key Signing Party
● Fingerprints
● Prevent MITM

Social Graph
● Web of Trust
● Depends on In-

Person

Transparency
● Key Transparency
● Scale
● Trust but Verify
● Detect MITM

Authority
● CAs
● Signed PGP certs
● Scale
● “Trusted” Third Party
● Undetected MITM

Key Lookup Today
which one should I use?

A Solution

Key Server

Design Goals:

Cryptographic identities for all the things

Auditability

Privacy

Consistent resultsAuthenticated
Channel

Log

Key Server with Transparency
for Users

Where we’re going
● Secure identities for websites, and now users
● Cryptographic Logs
● Log of Changes
● Authoritative Entries
● Log of Identity History
● Privacy
● Federation

Let’s Build This
Log of Changes Log of Changing Identities with History

t0 t1 t2 t3 t4

A B C D

k5k3

256

A=k1 B=k2 D=k3 C=k4 D=k5

t2

t3

t5

t1

Equivalence
Monitor

current
value

Verifiable Log

Entry 0 Entry 1 Entry 2 Entry 3 Entry 4

Hash Hash

Hash

Hash

Hash Hash Hash Hash Hash

Efficiently Verify & Detect

● Split-view attacks
● Entry is included in the log
● Append-only
● Enumerate all entries

Verifiable Log of Changes

Alice=k1 Bob=k2 Dan=k3 Carol=k4 Dan=k4

Hash Hash

Hash

Hash

Hash Hash Hash Hash Hash

Efficiently Verify & Detect

● Entry is included in the log
● Split-view attacks
● Append-only
● Enumerate all entries

Build a Key Value Map

● Enumerate all changes
● In chronological order

Sparse Merkle Tree
● Key value mapping
● Entry is included in the tree
● Single value for each user at H(user_id)
● Proof of absence
● Tree size of 2256

Alice Bob ... 2256

256
levels

Prefix Tree Optimization
● Compress empty paths
● Longest path is O(log_2(N))

0 1

0 0 11

Verifiable Log of Sparse Merkle Tree Heads
Key, value mapping that can be updated

Monitor

● Verifies mapping between log of
changes and sparse merkle tree
heads. t1 t2 t3 tnt0

A B ... 2256

256
levels

Sparse Merkle Tree of Values over Time
Key, value mapping that can be updated

Efficiently Verify

● Enumerate all values for a key
● “Has my key ever been compromised?”

Monitor

● Verifies that all changes for a key are
present in the sparse merkle tree entry.

A B C D

k5k3

256

Current
value

Previous
values

All Together
Log of Changes Log of Changing Identities with History

t0 t1 t2 t3 t4

A B C D

k5k3

256

A=k1 B=k2 D=k3 C=k4 D=k5

t2

t3

t5

t1

Monitor

Spam & Abuse Controls
● Online lookup for location in tree

● H(user_id) would leak user_ids

● H(Deterministic signature)

● Online lookup for key

● Keys can contain PII

● Store commitments to keys

Federation
UserID to provider resolution

● @domain responsible for identity

● Fallback to ordered list of providers

Provider discovery

● List of known providers in app

