Google

Transparent Keyservers:
Trust at Scale

Gary Belvin
@gdbelvin

Preliminary work based on CONIKS and Certificate Transparency



Problem

Websites have secure identities Users don't

Google



Spectrum of Identity Management

Security

« > Scale
In-Person Social Graph Transparency Authority
Key Signing Party e Web of Trust e Key Transparency | e CAs
Fingerprints e Dependsoninte Scale e Signed PGP certs
Prevent MITM Person e Trust but Verify e Scale
e Detect MITM e “Trusted” Third Party
[ ]

Undetected MITM



Key Lookup Today

which one should luse? Search results for 'gary.belvin@gmail.com'

Type bits/ keyID Date User ID

pub 2048R/611A047D 2013-10-21 CGary Belvin <garv.belvin@gmail .com>

pub 4096R/E3744EE4 2010-08-23 CGary Belvin <garvEbelwvins.net>
Cary Belvin <gary.belvin@gmail.com>

pub 1024D/221241E3 2009=04<2B *+*+* EEY REVOKED *+** [not werified]
Garv Belvin (secure email) <gary.belvinfgmail.com>



A Solution

Key Server with Transparency
for Users

s

Authenticated
Channel

Google

Design Goals:

Cryptographic identities for all the things
Auditability

Privacy

Consistent results



Where we're going

Secure identities for websites, and now users
Cryptographic Logs

Log of Changes

Authoritative Entries

Log of Identity History

Privacy

Federation



Let's Build This

Log of Changes

t3

t5

Log of Changing Identities with History

Equivalence
Monitor

N

~ ~
t1
/ \ / \
A=k1 B=k2 k3 k4 D=k5

current
value




Verifiable Log

Efficiently Verify & Detect

Split-view attacks

Entry is included in the log
Append-only

Enumerate all entries

{"root_hash": "kj34jdsfgjkh4=",
"signature": "uafdJGKI4ASJ1="}
Hash
Hash
Hash Hash

Hash Hash Hash Hash Hash

/ \ / \ \
Entry O Entry 1 Entry 2 Entry 3 Entry 4




Verifiable Log of Changes

Efficiently Verify & Detect

Entry is included in the log
Split-view attacks
Append-only

Enumerate all entries

Build a Key Value Map

Enumerate all changes
In chronological order

Hash
Hash
Hash Hash
Hash Hash Hash Hash Hash
/ N / \ \
Alice=k1 Bob=k2 Dan=k3 Carol=k4 Dan=k4




Sparse Merkle Tree

Key value mapping

Entry is included in the tree

Single value for each user at H(user_id)
Proof of absence

Tree size of 22%

Prefix Tree Optimization

e Compress empty paths
e Longest path is O(log_2(N))

0
256
0 /N 1 levels 0 /\1
7 N N
Alice | | Bob 2256




Verifiable Log of Sparse Merkle Tree Heads

Key, value mapping that can be updated

Monitor

Verifies mapping between log of
changes and sparse merkle tree
heads.

/ N\ / N\
L t0 [ t1 |[ t2 |[ t3 |

/\

tn

256
levels

/\

> N

w/

2256




Sparse Merkle Tree of Values over Time

Key, value mapping that can be updated

Efficiently Verify

e Enumerate all values for a key CO I
e “Has my key ever been compromised?”

256
Monitor

LAI[B ][ C]

e \Verifies that all changes for a key are
present in the sparse merkle tree entry.

Previous Current
values value



All Together

Log of Changing Identities with History

Log of Changes

t5

: <

Monitor

t1
/ \ / \ \

A=k1 B=k2 D=k3 C=k4 D=k5




Spam & Abuse Controls

e Online lookup for location in tree e Online lookup for key
e H(user_id) would leak user_ids e Keys can contain PII
e H(Deterministic signature) e Store commitments to keys

Google




Federation

UserlID to provider resolution Provider discovery

e (@domain responsible for identity e List of known providers in app

e Fallback to ordered list of providers

Google




